HR-MS測定マニュアル

小数点以下4桁までの精密質量測定(high-resolution MS; HRMS)の測定法を説明します。通常のMS測定法 は分かっているという前提で説明します。

<u>手順</u>

- 目的の化合物の(low-resolution) MSはあらかじめ測定しておき、目的のイオンピークが[M+H]+ででるのか、または[M+Na]+の様にNa付加イオンの形にしないと検出されないのか、などを確認しておきます。M+HかM+Naかに合わせて、精密質量(exact mass)を計算しておきます。精密質量は、一番存在比の多い同位体で計算したもので、chemdrawなどで計算できます。なお、H = 1.0078、Na = 22.9898です。
- (2) HR-MSでは、狭い分子量域のみを測定し、その範囲の中で目的分子量を挟むPEGピークを用いてキャリ ブレーションを行うため、測定するサンプルに応じてキャリブレーションに用いるピークが異なります。 そこでまずは、目的のピークを挟むPEGピークのペアをマニュアル末尾の表(Appendix A)で調べます。 ただし、Na付加イオンとして測定する場合はAppendix Bの表を使用して下さい。また、測定パラメー タの設定に必要なscan mass range (スキャンする範囲)とscan speedもこの表に載っています。

	∕ sc	an mass range	▶ キャリブレーション用PEGピーク				
360-425	65	15 (9.9+5.1)	571				
			L 415	400-470	70	15 (10.4 + 4.5)	
450-515	80	15 (10.1+4.9)	[459]				
			503	490-560	80	15(10+5)	
HAD-Las	100	1+(10++)	[E4-7				
		scan	speed	(cyclic time)	••	(Appendix A/B抜粋)	

(3) 次に質量分析計の分解能を設定します。Xeガスのひねりの近く(サンプルを入れる部分の奥)を通常測定時の1000 から3000へと変更し、サンプル調製を行う机の後ろの方を140から47へと変更します(写真参照)。

47に設定した場合

 (4) 次はパソコンでディレクトリ(フォルダ)を 作成します。HR-MSでは、DATA > Profile > HR > HRMFPOS (Na付加イオ ンの場合はHRMF-Na)の下に「8」という フォルダがあり、その中に個人のフォルダ があります(右図参照)。自分のフォルダの 下にサンプル番号等の適当な名前のフォル ダを作成します。

- (5) サンプルのフォルダを選択し、load > selfとしてフォルダの設定を読み込みます (下図)。右側の枠の中のMS and Detector Conditionを選択し、MS resolutionを3000、Detector amp/gainを*1/4であることを確認します(なっていない場合は入力して下さい)。
- (6) 次にScan modeを選択し、手順(2)で調べておいたscan mass rangeとscan speedを入力します ("type in")。入力したら、checkをクリックし、左側の枠の中の"cyclic time"がAppendix A(or B)の表 と同じあたいになったことを確認し、accept > saveとします。

(7) ここまで設定が終わったら、通常測定と同様にMeasとクリックし、測定画面にしておく。また、フォー カスなどの調整のためにmonitorをクリックしてモニター画面にしておく。 (8) ここまでの質量分析計の設定とパソコンでの準備が終わったら、サンプル調製を行います。サンプルは 通常のMS測定時と異なり、キャリブレーション用にPEGを含むマトリックスを用います。たとえば、 mNBAをマトリックスとして測定する場合は、mNBA+10% PEG400やmNBA+10% PEG600などで す。Naイオンを加える場合はNa入りのmNBA+PEGを用います。他のマトリックスを用いる場合はPEG を加えたものを用意するなり、ターゲット上でうまく混ぜるなりして下さい。
(注意1) PEG400やPEG600はそれぞれm/z 400や600を中心にピークがでます。なので、サンプルの

分子量が大きい時は大きめのPEGを使います。PEG400でも600や700程度までPEGピークはでます が、ピークの大きさは小さくなります。

(注意2) キャリブレーションに使うPEGのピークとサンプルのピークの強度が両方ともしっかり検出され るようにする必要があります。片方のピークが強すぎてピークの先端が切れてしまう場合は、PEGやサン プルの量を調節する等します。

(補足) PEGのピークとサンプルのピークがかぶる場合等には、マトリックス+PEGを載せたターゲットと マトリックス+サンプルを載せたターゲットを二つ用意し、測定途中にターゲットを入れ替えるという方 法をとります。

(9) 通常の測定同様にサンプルをセットし、accelをONにしてEmissionを5 or 10にする。目的の分子量あるいはキャリブレーションに用いるPEGピークをモニターに表示し、フォーカス合わせを行う(緑色シールのつまみを調整してピークが最も高くなるように)。次に、COARCEを"狭"から"広"の方へ回してピークを拡大(幅を拡大)し、Pole 1のつまみを6.5から適当に回してピークが高く、二等辺三角形になるように調節する。

 (10) 通常通り、Resumeとして測定画面に戻り、Startをクリックして測定開始。測定中はstartランプが点 灯するが、これが5回程度点灯したらEndとして測定を終了し、saveする。
(補足) PEGとサンプルを別のターゲットで測定する(測定中にサンプルを入れ替える)場合は、startラン プが消えている間にaccelをOFFにしてEmissionをOにする。その後はstartランプが点灯するのは気にせ ずにターゲット(PEG)を出し、次のターゲット(サンプル)をセットする。Startランプが消えている間に Emissionを5 or 10にしてaccelをONにする。5回程度startランプが点灯したらEnd > saveとする。

- (11) 次はデータの解析です。まずは通常通りにサンプルのフォルダを選択してopenします(図参照)。その 後、右の枠内のpropertyをクリックし、Peak DetectionがCentroidであることを確認します(場合 によってはPeak Topで検出した方が良い場合もあります)。
- (12) 画面左上のイオン強度のグラフの1点をクリックします。すると下に選んだ測定回のスペクトルが表示されます。スペクトル上のバーをクリックし、Mass Checkerを選びます。
- (13) 下にでてきたMass Checker画面でキャリブレーションに用いるPEGビーク(手順(2)で選んだもの)を左 から順に二本選びます。上のバーをクリックし、assign from keyを選びます。PEGビークの分子量候 補が表示されるので、キャリブレーションに使う二つを小さい方から順に二つ選択します(Na付加イオン の測定の場合は、type inでAppendix Bの表に記載されていた値を二つ入力します)。バーから Calibrationとし、再びバーからaccept > with tableとします。すると、右下の枠内にPEG以外の ピークで検出されたものピークの測定値が表示されます。下の図の場合は、サンブルのピークが 685.3867と検出されています。なお、計算値と測定値の差は、0.005(5ミリマス)以下が一般的に受入 れられている基準です。この範囲に入っていない場合は、ピーク調整などをして取り直しです。 (補足) PEGとサンプルを別のターゲットで測定した場合は、まずPEGを測定したデータを用いて上と同 様にcalibration > accept > with tableまで行います。次にサンプルを測定したデータを1点選択し、表 示されたスペクトルのバーからacceptを選びます。すると右下枠内に測定データが表示されます。計算 値とのズレが0.005より大きければ、PEGとサンプルの測定回の組み合わせを変えてcalibration、測定 値の表示を繰り返します。それでも0.005以内の値が得られない場合はピーク調整をやり直して再測定し て下さい。クリック > Hard Copy > 画面外を右クリックでプリントアウトできます。
- (14) 測定が終わったら、質量分析計の分解能を1000と140に戻し、POLE 1を6.5に、COARCEを「狭」 に必ず戻して下さい。

Appendix A (サンプル分子量とキャリブレーション用のPEGピーク対応表)

scan mass range	scan speed	cyclic time	PEGピーク	scan mass range	scan speed	cyclic time
			@1517	140-205	31	15 (9.8+5.2)
185 - 250	40	15 (1014+4.6)	@195			
			5239]	230-295.	46.	15 (10.1+4.9)
270-340	50.	15 (10.2+4.7)	@ 283			
			327]	310 - 380	55	15 (10.174.8)
360-1125	65	15 (99+5,1)	c 371			
, , , , , , , , , , , , , , , , , , ,	0,		415]	1.00 -1.70	70	15(100+05)
Ato LIF	20		5419	400-470	70	
470-515	00	15 (10,1+4,1)	4.1)			
			505	490-500	80	15(10+5)
540-600	100	15 (10+5)	547			
			591	580 - 645	100	15 (10.(+4.9)
620-690	100	15 (10.1 + 4.8)	[635]			
			679	670-735	115	15 (10.2 + 4.8)
715-780	120	15 (9.9+5)	723			
			767	760 - 820	135	15 (98+5.1)
800-865	135	15 (10.1+4.9)	[811]			
			855]	840 - 915	120	15 (9.8 +5.2)
890 - 955	145	15 (99+5.1)	899			
			943	935-1000	155	15 (10.1+4.9)
980-1040	175	15 (10.1+4.9)	[987]			
			1031	1015 - 1090	145	15 (9.975)
1060 - 1130	160	15(99+51)	[1075]			
,			1119]	1110 - 1180	170	15 (09+5)
1160-1-10	200	$1 \in (49 + 5.1)$	51163	11110		
1133-1213	200	[3 (11 - 511)		1200 1260	215	1+(10+5)
		15 (90 - 5 0)	(120)	1200-1200	210	
1240-1305	200	15(14+510)	1251)			
			(1275	1285-1350	210	15 (10.1+4.7)
1330-1395	2/5	15(10+5)	1339]			
			(1383	1375 - 1435	240	15 (10 + 5)
1420-148	0 245	15 (9.9+5.1)	[42]]			<i>(</i>
			(47)	1460-1525	240	15(10.2+4.8)
1500-1570	225	15 (10+5)	1515			
			1559	1550-1615	245	15 (9.9+5.1)
1595-1655	275	15 (10+5)	[1604]			
			61648	1640-1700	280	15 (10 +5)
			[1692]			
			1736	1730-1785	325	15 (10.0/+4.99)
			1780			

Appendix B (Na付加イオンサンプル分子量とキャリブレーション用のPEGピーク対応表)

scan mass range	scan speed	cyclic time	PEGピーク	scan mass range	scan speed	cyclic time
MF, PE 160-225,	G-Na 35, 15(101-	+ 4,9)	(³ 72 (⁹) 217]		~	
250-315	50. 15(10.3+	- 4.7)	© 261	zat-360	55. 1	5 (0 9 + 5,1)
340-400.	70. 15(10.5	+4.5)	349, 2	390-1150	6.t	(101 + 4.9)
430-490	80 15 (9.8	+5.2)	437.Z	170-63E	80	1 = (9 - 2 - 2 - 2)
515 - 580 ·	90 15 (10.1	1+49)	525.3			
600-670.	95 15 (9,0	9+5.1)	613.3	500-020	100	15 (9, 7 + 5, 5)
690-755.	115 15 (9.0) + 5·1)	657,4 701.4	650-710	115	15 (9.7 + 5.3)
780-850.	120 15 (10.	+5)	745.4 789.4	730-800	ניק	15 (10+5)
870 - 930	150 15 (9.7	+ 5.3)	833.5 877.5	820-890	130	15 (10.2+4.8)
955-1020	160 15(10.	z+4.8)	921.5 965.6	910 - 975	150	15 (1045)
1040 - 1110 .	165 15 (10.	¢+4,6)	[1009.6 [1053.6]	1000-10	60 175	15 (9,9+5,1)
1130 - 1195	190 15(10	3+4.7)	[1097,6 [1141.7]	1090 - 115	0.190	15 (9.9 + 5.1)
1220-1280	, 200 15 (9.0	4 + 6.6)	1185.7	1175 - 120	10 190	15 (9.9+5.1)
(310 - 1370	220 15 (9.6	+5.4)	1273.7 [1317.8	1260 - 13	30 19	5 15 (10.3+4.7)
1395 - 1460	220 15 (9.8	+ 5.2)	1361.8	1350-14	15 21	0 15 (9.6+5.4)
1885-1545	set it log	751)	1449.8	1440 - 1	1500 240	15 (9,6 + 5.4)
			(1537.9	1530 - 15	85 29	0 15 (10+5)
15-90-1635	240 15 (10.7	+ ¥.3)	1625,9	1615 - 11	18-0 26	0 15 (10 + 51
			1713.99	1705-1	765. 3	(10 2+4,8) 15 (+0++)
1750 - 1810	, 300, 15(°	7,4 + 5,1)	1802.048	1790-1	855, 2	290 15 (1015) (102+48)

[HR-MS測定マニュアル]