< Main publications >
1. |
Takahashi M., Tsuda T., Ikeda Y., Honke K. and Taniguchi N. gRole of N-glycans in growth factor signaling.h Glycoconjugate. 2004 20: 207-212, |
2. |
Toyoshima C., Asahi M., Sugita Y., Khanna R., Tsuda T., and MacLennan D.H. gModeling of the inhibitory interaction of phospholamban with the Ca2+ATPase.h Proc. Nat. Acad. Sci. USA 2003 100: 467-472. |
3. |
Kato M., Hayashi R., Tsuda T., and Taniguchi K. Eur J Biochem. gHigh pressure-induced changes of biological membrane. Study on the membrane-bound Na+/K+-ATPase as a model system.h 2002 269(1): 110-8 |
4. |
Sasai K., Ikeda Y., Fujii T., Tsuda T., and Taniguchi N. gUDP-GlcNAc concentration is an important factor in the biosynthesis of b1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V.h Glycobiology. 2002 12(2): 119-27 |
5. |
Sasai K., Ikeda Y., Eguchi H., Tsuda T., Honke K., and Taniguchi N. gThe action of N-acetylglucosaminyltransferase-V is prevented by the bisecting GlcNAc residue at the catalytic step.h FEBS Lett. 2002 522(1-3): 151-5 |
6. |
Sasai K., Ikeda Y., Tsuda T., Ihara H., Korekane H., Shiota K., and Taniguchi N. gThe critical role of the stem region as a functional domain responsible for the oligomerization and Golgi localization of N-acetylglucosaminyltransferase V. The involvement of a domain homophilic interaction.h J Biol Chem. 2001 276(1): 759-65 |
7. |
Tsuda T., Ikeda Y., and Taniguchi N. gThe Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation.h J Biol Chem. 2000 275(29):21988-94 |
8. |
Ikeda Y., Koyota S., Ihara H., Yamaguchi Y., Korekane H., Tsuda T., and Taniguchi N. gKinetic basis for the donor nucleotide-sugar specificity of b1, 4-N-acetylglucosaminyltransferase III.h J Biochem (Tokyo). 2000 128(4):609-19 |
9. |
Tsuda T., Kaya S., Yokoyama T., Hayashi Y., and Taniguchi K. gATP and acetyl phosphate induces molecular events near the ATP binding site and the membrane domain of Na+,K+-ATPase. The tetrameric nature of the enzyme.h J Biol Chem. 1998 273(38):24339-45 |
10. |
Tsuda T., Kaya S., Yokoyama T., Hayashi Y., and Taniguchi K. gHalf-site modification of Lys-480 of the Na+,K+-ATPase alpha-chain with pyridoxal 5'-diphospho-5'-adenosine reduces ATP-dependent phosphorylation stoichiometry from half to a quarter.h J Biol Chem. 1998 273(38):24334-8 |
11. |
Tsuda T., Kaya S., Funatsu H., Hayashi Y., and Taniguchi K. gFluorescein 5'-isothiocyanate-modified Na+,K+-ATPase, at Lys-501 of the a-chain, accepts ATP independent of pyridoxal 5'-diphospho-5'-adenosine modification at Lys-480.h J Biochem (Tokyo). 1998 123(1):169-74 |
12. |
Tsuda T., Kaya S., Yokoyama T., and Taniguchi K. gAre pyridoxal and fluorescein probes in lysine residues of a-chain in Na+,K+-ATPase sensing ATP binding?h Ann N Y Acad Sci. 1997 834:186-93 |
13. |
Kaya S., Tsuda T., Hagiwara K., Fukui T., and Taniguchi K. gPyridoxal 5'-phosphate probes at Lys-480 can sense the binding of ATP and the formation of phosphoenzymes in Na+,K+-ATPase.h J Biol Chem. 1994 269(10):7419-22 |
14. |
Yamazaki A., Kaya S., Tsuda T., Araki Y., Hayashi Y., and Taniguchi K. gAn extra phosphorylation of Na+,K+-ATPase by paranitrophenylphosphate (pNPP): evidence for the oligomeric nature of the enzyme.h J Biochem (Tokyo). 1994 116(6): 1360-9 |
|